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NASA TT F-10,827

DIFFERENCE METHODS OF SOLVING THREE-DIMENSTONAL PROBLEMS IN
GAS DYNAMICS

K. I. Babenko, V. V. Rusanov

ABSTRACT. The problem of stationary flow about an arbi-
trary smooth body by a supersonic stream of non-viscous non-
thermoconductive gas is examined. It is assumed that the body
is stationary, and the stream far in front of the body is uni-
form. The study is restricted to flow in the region between
the bow wave and the body up to the next discontinuity,

Let us first of all discuss certain ideas which underlie the compilation
of numerical algorithms for solving a problem in three-dimensional flow.

A basic characteristic of the numerical algorithm is its efficiency.

Efficiency in algorithm operation may be described by the number of elem-
entary arithmetic and logic operations necessary to derive a solution of the
specified accuracy -- i.e., roughly speaking, it may be described by machine
operational time required to solve a problem with the specified accuracy.

Since the degree of maximum error must monotonically decrease as the in-
terval of the difference network becomes smaller in an intelligent numerical
algorithm, the number of elementary operations N as a function of the specified
error € comprises a rough estimate of operational efficiency. The economy or
efficiency concept is an asymptotic one, i.e., it is important to us how N(e)

increases when ¢ » 0. It is incorrect to describe the algorithm by the quantity

N(e) for a given value of ¢, as is evident from the most elementary examples.

Thus, in a problem involving a search for function minima, the functions of one

or two variables may be directly factored, but this factoring cannot be done
for functions of a large number of variables.

Another illustration which is closer to us is the boundary value problem
for a system of nonlinear differential equations. Fitting is a more or less

unique algorithm for solving such a system. However, if this fitting is easily
accomplished for low-order systems, it is practically impossible when there are

even ten parameters if there are no sufficient reasons for limiting the region

of parameter change from the very beginning, i.e., for approximately prespecify-

ing the parameter values with appreciable accuracy. This amounts partly to the

need to know in advance the nature of the solution sought.

It is remarkable in difference solutions that 1n N(¢) rises linearly as
In 1/¢ grows larger, and therefore,difference methods essentially permit e to
vary widely without the time required to solve the problem growing to astro-
nomical proportions.,

* Numbers in the margin indicate pagination in the original foreign text.



It may seem that it is rather meaningless to make demands on accuracy
which exceed the requirements of practice. This is in fact not so.

(1) sSince we are solving a problem which is physically idealized to a /248
certain degree, we must in principle find it possible to carry out the cal-
culation with a degree of error less than the error introduced by the physical
idealization, so that we may state the problem more precisely.

(2) Very often the decisions being sought have a number of singularities
and subtle details, and when we do not take the latter into proper consideration
we may be mistaken in the values of the functionals which are required for
practical necessities. It is clear to everyone that if a solution has a sing-
ularity, then in principle a small interval in the neighborhood of the sing-
ularity is required.

(3) 1In some fields of technology, the impossibility of conducting experi-
ments results in the fact that computations are a basic source of information
for engineers. Therefore, the quality of the computations and the degree of
error are of primary significance. 1In gas dynamics, we may also have the
situation where computations may in principle replace experimentation.

The conclusions which may be drawn from numerical computations or approx-
imate methods are not, however, logically substantiated until the degree of
error has been theoretically calculated. In all the problems analyzed below --
and this is also true of all gas-dynamics problems -- not only has no theoreti-~
cal error estimate been obtained to date, but also the convergence of difference
equation solutions toward the boundary-value problem solution has not even been
proven.

Computational accuracy must therefore, for the time being, be examined
empirically by subdivision of the difference network intervals and subsequent
study of the nature of the error. Consequently, the numerical algorithm must
tolerate an appreciable decrease in network intervals.

From the above, it is clear what fundamental significance may be assigned
to the nature of the increase in function N(¢) as ¢ decreases. It is our
opinion that, with proper formulation of the numerical algorithm, difference
methods give an order of increase N(e) which is close to optimum, if the comp-
arison is made for a certain class of problem.

Numerical algorithms for solving gas—dynamics problems ultimately reduce
to algorithms for solving several boundary-value problems for a system of
quasi~linear equations. Successful formulation of the numerical algorithm
therefore requires a profound understanding of the nature and character of the
corresponding boundary-value problems.

It is a matter of general knowledge that various types of equations in
supersonic and subsonic flow regions lead to essentially different mathematical
statements of the problems. In the case of supersonic flow, where the equations
are of the hyperbolic type, we may conduct the calculation in succession from
some initial surface downstream. This appreciably simplifies the matter. 1In




the case of equations of the mixed type, the

problem must be solved in the whole region at
- . once. In our opinion, the adjustment method
is the best for such problems. The essence
of this method consists of the fact that a
stationary or self-similar solution is found
as the limit of a non-stationary or non-self-
- similar solutionm.

In the numerical solution process, we
have always ascertained the fact that the non-
stationary solution converges to a stationary
solution, or a non-self-similar solution con-

! verges to a self-similar solution. Moreover,

" in the numerical solution it was found that
the limiting equations are strongly attracting,
and this last circumstance plays a decisive
role in the employment of the adjustment

¢ ' method.

Let us speak about this in somewhat
- greater detail. 1In the difference method of
solving boundary-value problems for non-linear
equations, we ultimately reduce the matter to
solution of a system of non-linear equations
of an order which is often rather high. This
system of algebraic equations clearly has no unique solution. Actually, we en-
counter a problem of this sort in any iteration method of solving the problem.
And it is extraordinarily important that the solution we seek be strongly con- /249
vergent. There are no general methods for ascertaining this fact in the formally-
written, numerical algorithm. We therefore believe that the way out may be found
by turning to the physical meaning of the problem.

Figure 1

The adjustment method may be treated as a certain iteration method having a
physical meaning, and it may be assumed that the existence of a limit in the
physical problem guarantees convergence of these iterations. This hypothesis is
brilliantly confirmed. The empirically ascertained property that stationary
solutions are strongly convergent ensures convergence to the needed solution.

Application of iteration methods permits reduction of the solution of non-
linear algebraic equations to the solution of linear equations for which the well-
developed method of matrix fitting or a combination of the fitting method plus
iterations may be used.

Let us take a look at the problem of statiomary flow about an arbitrary
smooth body by a supersonic stream of non-viscous non-thermoconductive gas. We
will regard the body as stationary, and the stream far in front of the body as
uniform. 1In supersonic flow about a body, it is known that the region of the un-
perturbed uniform stream in front of the body will be separated from the region
of perturbed flow by the bow shock wave.

We will restrict ourselves to studying flow in the region included between
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Figure 2

the bow wave and the body right up to the next discontinuity, if one occurs. 1In
supersonic flow, perturbations may be transmitted only downstream, if they are
not so large as to completely change the qualitative flow pattern. Therefore,
the flow in the region in question may be found without solving the problem as

a whole. In a number of cases, this is sufficient for practical purposes.
Depending on the shape of the forward part of the body and the Mach number of
the unperturbed flow, the forward part may be either detached (Figure la, b) or
attached (Figure 1lc). 1In cases a and b, a subsonic region is generated behind
the bow wave (the dashed line on the diagram indicates the boundary of this
region). 1In case ¢, the flow has a singularity at the apex of the body.

Because of this nature of the flow, it is convenient to divide the problem
of determining the stream in the region between the shock wave and the body into
two parts. Let us divide this region by some surface Il into the regions G; and
Gy, in such a way that at all points of II the flow velocities will be supersonic,
and surface II will be of the three-dimensional type. Determination of flow in
region Gy may be reduced to solving a boundary-value problem which differs for
cases a, b, and c¢. After solving this problem, let us find the values of
velocity V, pressure p, and density p on surface II, after which the flow in
region G2 may be found.

. in

We will dwell first on the method of determining flow in region Gq fthe case
when the body has a blunt nose (Figure la), and between the shock wave and the
body a mixed flow occurs. Determination of flow in G; may be reduced to solving
a boundary-value problem for a system of quasi-linear equations of the mixed
type with three independent variables. The region in which the solution is /250
sought is limited, in the general case, by the body surface, the shock wave,
and the limiting characteristic surface, while the shape of the two latter sur-
faces is not known in advance.

Limiting conditions are set only on the part of the region boundary in
which the solution is sought. 1In contrast to equations of the hyperbolic type,
the effect of each point is here extended to the whole region; this must also
occur for stable difference system. These two conditions cause certain

4



difficulties in the numerical solution of the problem, especially in the three-
dimensional case where it is required that a very considerable number of non-
linear difference equations be solved. The situation as a rule is appreciably
simplified in the case where the bow section of the body is spherical in shape.
Specifically, if the line of intersection of the body surface with the limiting
characteristic surface delimiting the region of influence is entirely situated
on the spherical part in this case, the flow in the mixed region will be axisym-
metrical relative to the direction of the velocity vector of the incident stream.
For blunt cones and other bodies with spherical blunt forebodies, the axial sym-
metry in the nose region may be maintained up to substantial angles of attack,
even exceeding half the aperture angle of the cone. Flow in the supersonic
region will, moreover, of course be essentially three-dimensional. With the
above in mind, we will study the calculation method only for axisymmetrical flow
around a blunt body with arbitrary bluntness.

Let us examine a body of rotation situated in a supersonic gas stream whose

velocity of V; is directed along the body's axis of symmetry. Let p, and p. be
pressure and density in the unperturbed flow. We will consider the unperturbed
gas to be ideal with an adiabatic exponent of ke, = 1.4. Let z,r,d be cylind-
rical coordinates with axis z along the axis of the streamlined body. By virtue
of the problem symmetry, the bow wave will also be a surface of rotation, and it
is sufficient to examine the flow ¢ = const. in any one meridian plane (Figure 2a).

Let u, v be components of velocity vector V along axes z, r; let p be

pressure; and let p be density. The boundary value problem for these quantities
as functions of z, r is formulated as follows:

(1) Desired functions u, v, p, p in the region between the shock wave

and the body satisfy equations

du 1
o T

mlm
N

dv 1 QB-—O‘

da v e o |
(1) /251
& o(Z+F4F)=0

d du dv 2Y\—0.
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Here
d ad a
7=t TV
c? = 2 (p, p) is the square of the speed of sound.

(2) The desired functions satisfy the following conditions:

(a) On the body surface




Vo= —using + vcosep = 0,

(2)

where Vn is the normal velocity component on the body and ¢ is the angle between
‘axis z and a tangent to the body;

(b) On the shock wave:

PVv =‘Poovv°°;‘
V1 = Vtoo;
OVi4p =poVo, + Pooi . 3

on Vo
h(p, p) + 5 = hoo +—5—-

Here V,, and V. are normal and tangential components of velocity on the shock
wave; h (p,p) is enthalpy per unit of gas mass; V, = -u sin ¢ + ¥V cos y; V. =

ucos ¢+ v sin ¢, P is the angle between axis z and the tangent to the shock
wave.

(¢) On the axis of symmetry v = 0,

It should be borne in mind that the value of ¢ is known at any point of
the body surface, while the value.of ) is not known in advance, and may be det-
ermined at the same time as the wave shape.

The above-formulated conditions are not at all formally connected with the
presence of the sonic line and the limiting characteristic inside the region.
However, in solving the problem,their position may be taken into account in
some way or other, depending on the method of solution. Thus, if -- in solving
the problem -- we remain within the limits of stationary equations,it is almost
unavoidably necessary to trace the exact position of sonic line BC and limiting
characteristic BD. In solving the problem by the adjustment method, it is un-
necessary to determine the exact position of the limiting characteristic, but
we must make sure that its whole course is within the region in which the sol-
ution is sought.

The physical fact underlying the adjustment method is that under real con-
ditions, stationary flow around a body always occurs as a limit to non-stationary
flow during sufficiently protracted motion of the body at a constant speed and
with constant external medium parameters. It is, moreover, assumed that this
limiting flow does not depend on the manner in which entrance into the station-
ary regime occurred. It is, therefore, to be expected that under constant
boundary conditions on the body and at infinity the solution of the non-station-
ary flow problem will tend toward the solution of the stationary problem as
time t tends toward infinity, regardless of what the original flow was. Since
equations of non-stationary gas flow are always hyperbolic, the matter reduces /252
to solving a boundary-value problem for a hyperbolic system of differential
equations. A mathematical formulation of the non-stationary problem is immedi-
ately obtained from the above-formulated stationary problem. In the differential
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equations, however, the total derivative must be written with due regard for the
explicit dependence of the functions on time d/dt = 3/3t + u* 3/3z + v+3/9r.

The boundary conditions on the body and on the axis remain unchanged.
Under boundary conditions on the wave Vv - D must be written, instead of Vv’

where D is shock wave velocity.

When t = O,the position of the shock wave and the distribution of all fun-
ctions in the region between wave and body are prescribed. For convenience of
the numerical solution, this region should also be bounded on the side of super-
sonic flow. For this purpose, it is sufficient to draw line KK' lying outside
the region of influence, such that the cylindrical surface constructed on it
(parallel to axis t) is of the three-dimensional type. This ensures correct
formulation of the problem in the absence of any boundary conditions on KK'
(Figure la). '

Let us go on to note that, if the problem is regarded in its strict math-
ematical formulation, the values of the hydrodynamic quantities on the body will
in general not be close to those which should prevail in stationary flow. This
follows from the fact that -- because the normal component of velocity on the
body surface equals zero -- the change in entropy on the wave does not reach the
body in a finite time interval, and entropy on the body surface keeps the same
value which it had in the initial data. Strictly speaking, therefore, the sol-

ution to the non-stationary problem tends non-uniformly to stationary flow as
t—)oo.

When the problems are being solved by the adjustment method, this effect is
parasitic, and the difference system must be so constructed that the correct
entropy value is established on the body. This may be readily done, since
entropy perturbations are transmitted from wave to body in the difference equa-
tions in a finite number of steps in time.

Let us describe the algorithm for numerical solution of the problem. Let
us introduce a new system of curvilinear coordinates £,y,t, linked to the wave
form in such a way that in the new coordinates the region between the body and
wave will have fixed boundaries. For this purpose let us set

2

2 =3 () —1G () +8F @ 01 (1— )

. (4)

r=1G(y) +&F (Y, Oy

In the new coordinates, the body equation is £ = 0, while the wave equation is
€ = 1. The axis of symmetry corresponds to line y = O, and line KK' to line
y = Y (Figure 2b). Functions 4 (y) and G(y) determine the shape of the body and
are given. Function F(y,t) determines the wave form and is found together with
u, v, p, p, in the process of the solution. The quantities ¥ and D which enter
into the boundary conditions are expressed by 9F/9y and 3F/3t by means of ele-
mentary formulas.

In this way, the conditions on the wave contain equations for determining
function F(y, t). It is convenient to use matrix notation to transform the 1253
equation; then system (1) will be written as




at+9"62+QS T =0, (5

where " 0
v 110 )
X= p ’ F-——'T pcav )
p pY \

w 0 pt 0 (v 0 0 0
JO0 « 0 O _J0 v p* O
%= pct0 u O =10 ptv O
p 0 0 u 0 p 0 v

After transformation to new variables, equations (5) assume the form
+—A OE-+-B A—I‘—.O ‘
A = E¥t + %E. + BE,, (6)
B = Ey: + %y. + Byr.

The derivatives of &, y with respect to z, r, t are computed by the ordinary
rules and in the last analysis are explicitly expressed by &, y, functioms y, G,F,
and their derivatives. The boundary conditions on the wave remain as before;
those on the body are written in the form

z,u — ryu = 0. ‘ (7)

We should note that the described change of variables is not at all the
only one possible, and is given here only as an example. In every case, the
selection of a particular change of variables is stipulated by the demands of
the specific problem.

Let us introduce into space &, y, t the rectangular network with intervals
At = r, A£='hl=1/M, Ay=h2=Y/L

" = nv Em = mhy; yo = thy, [ G,y ") = frp %y = t/hy; %, = t/hy.
We will write the difference system for the formulated problem in similar
fashion as in (Ref. 1) for the case of three-dimensional stationary flow. The
role of variable x is played in our case by t, and that of variable J by

variable y. 1In the notation of (Ref. 1), the iterative difference system looks
like

(S+1) {Xaefer® — [1 4+ 52 (T —20 + T X+

+ oA n+( )(S—-I)( Xn+(q+1)+BX:l.l)+ (8)

+(7)

{

a4 (L |
+ Bmi(f; ),(S I (T — T @X5H0 + BXp) + 2T = 0.
L,

myL,
T2




Here S and T are shift operators per unit with respect to m and 7 respectively;
I is the identity operator; Xg éq)ls the value of vector X 7 on the q th iteration;
b4

and a, B, 0 are system parameters, while o + 8 = 1, o > O, B > 0. There is a

slight difference between the manner in which the difference system is written

in (Ref. 1) on'.the line KK' when ! = L, where the derivative with respect to y

is replaced by the one-sided difference relationship

n+(q) fn+(q)

mt gl mbg Lol
ha ‘

( af)n+w)
dy m+_ Lo

No boundary conditions are posed when 7 = L. The system of algebraic equations

for X n+§q+l)1s solved separately for each I by the fitting method described in
9
(Ref. 1).

The method of solving equations on the wave is, of course, different from
that described in (Ref. 1), where the stationary wave is examined. In the non-

stationary case, it proves to be more convenient not to reduce the problem to 1254
the solution of a cubic equation, but to make direct use of Newton's method for
finding the solution of the entire non-linear system. After determining

n+(q+1) n+(q+1)

Ft 7 » the value of FZ is found by integrating the equation 3F/3t = Ft
s -

with respect to t, e.g., by formula

Fie0 — F3 g (aFf1 4 BFLD). (9

Let us note, however, that in some cases, in calculating with this formula,
the values of FZ prove to fluctuate drastically from p01nt to point, and the

graph of function F with reSpect to y assumes a saw—toothed appearance, In
other words, the parasitic term §F;, = c (- l) is added to the exact values of
FZ' Without pausing to study this question, let us merely remark that coef-
ficient c (generally dependent on 1) is of order O(h ). But the approximation

error of the system is of the second order with respect to h,; therefore, ad-

2 ’
dition GFZ may considerably exceed it and reduce the computational accuracy.
In order to eliminate this defect, when F2+§q+1) is calculated, the presence of
the (q) ’

/paras1t1c term in F must be taken into consideration, and it must some-

how be neutralized. After the system for the wave is solved, there is a reverse

and all values of Xﬁ+(q+l) are calculated for m = M-1, ..., 1,0. The iterative

compuation is finished when the systems are solved for all values of I. Finally,
after completion of the prescribed number of iterations Q, we finish computing

+ +
the n + 1 layer, assuming that Xn+% :+§Q)’ F? 1_ F? (Q).

The computation of X" _ continues until inequality xnax]lX“”“—— $3“<:e}is

m,Z m,i

fulfilled, where n and ¢ are given values,



Figure 3 illustrates the results derived from computing flow about the
nose of the body with a sector of negative curvature when M_=10. It is

interesting to note that the arrangement of the characteristics here is the
same as for a sphere for appreciably smaller M _.

Proceeding now to compute flow in region G2,we would like to remark that

the numerical algorithm for this was first proposed in (Ref. 2). (Ref. 1), as
already stated above, presents it in detail and presents the needed studies to
substantiate it. In the following, we will hold to the notation adopted there.

Let us pause on several aspects of the problem of supersonic flow of an
ideal gas past smooth bodies, and specifically on computing the flow past long
smooth bodies and three-dimensional flow past cones.

First of all, we will say a few words about the connection between the
computations in G1 and G2. Into region G2’ as into Gl’ we introduce the cylin-

drical coordinates z, r, ¢§. Since axis z in region G, must always have its

2
course inside the body,z, r, 9§ will, if need be, differ from the coordinates in
Gy (let us designate them by z', r', ¢'. Therefore, in putting the automatic

transition from Gl to G2 into effect, a number of technical difficulties arise

which involve the need to pass from one three-dimensional network to another.
Let us analyze the case where the body has a spherical forebody and the flow in

10
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the forward section is axisymmetrical., As surface I, let us take a plane per-
pendicular to the z axis, If the line of intersection of I and the body lies
on the spherical part of the bluntness, the flow in plane 0 will be found from
a computation of the axisymmetrical flow around a sphere. To calculate flow
in region G2, we must know v, p, p on lines & = const, lying in plane II. The

image of each such line in plane z', r' gives a certain curve (hyperbola),
a(z', r') = const which will intersect the body and the shock wave.

Line & = const in plane II will change into curve B(z', r') = const in
plane z', r'. Thus, region 0 < £ <1, 0< ¢ < 7 in plane I will be homeom—

orphic to the region in plane z', r' delimited by the shock wave, the body, ‘
and the two hyperbolae a(z', r') = const corresponding to angle values & = 0

and ¥ = 7, After determining flow in the mixed region, we will derive the

original data in the supersonic part of the flow, and consequently we can find

V, p, and p downstream by solving the mixed problem for the hyperbolic system.

It is easy to introduce new variables in plane z', r' so that the coordinate

lines will be one of the rays y = const (lying in the supersonic region) and

the lines o = const and B = const. By solving the mixed problem in these

variables by the same algorithm which is employed in region G2, but for two

independent variables, we automatically obtain V, p, and p in II. Here the role l

of "time" will be played by coordinate z, and we will derive the values of the

desired functions at the points of the difference network which is erected in }

region GZ' Use of this procedure disposes with the need for complex interpol- i
|

ation with respect to three independent variables, and makes it possible to

proceed automatically from computing region Gl to computing region G2 when the

problem is solved by a computer.

After obtaining the solution in plane I, we will find the values of the
downstream hydrodynamic quantities by employing the numerical algorithm des-
cribed in (Ref. 1). However, if the body is sufficiently long, a number of
difficulties will arise in the course of this solution.

Let us explain the nature of these difficulties by the example of axisym-
metrical flow past a blunt cone and a blunt cylinder. At great distances from
the nose, on the body surface there appears a region with marked entropy and
density gradients -- the turbulent layer. In z,{ coordinates, the thickness
of the turbulent layer tends toward zero when z > =, but the body's density
gradient tends toward ». Therefore, with large z values the order to which
the differential equations are approximated by the difference equations becomes
smaller, and,consequently,the numerical solution error also increases, unless /256
we provide for specific refinement of the mesh interval along the coordinate
£ when the £ values are small. The law of mesh interval refinement along co-
ordinate £ is not univergally valid, but depends on the solution. Technically,
it is more convenient to replace the non-uniform mesh with respect to & by new
variables x,n,z = x,n = n (£,z) calculated in such a way that the uniform
interval along coordinate n will give the requisite mesh interval refinement
along coordinate £ at small values of E£.

We will present a few computational examples. Figures 4 and 5 give graphs

11
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of variables p and p obtained when a perfect gas flows past a blunt cone with
semi-aperture angle of 15° when M_= 10 and k = 1.4, All the linear dimensions

are given in terms of the radius of the spherical bluntness; pressure is stated
in terms of pressure p_ of unperturbed flow, and density is given in terms of

density p_ of unperturbed flow.

Figure 4 gives the relationship of p (z, £) as a function of £ with fixed
values of z. Coordinate z is measured from the nose of the body. The upper
part of the figure shows the cross-section of the body with a meridian surface
and the shock wave trace.

The number on each curve indicates the value of coordinate z. It is ap-
parent on the drawing that when z > 25 the pressure hardly depends on z (the
difference between pressures in these cross-sections is fractions of one per-
cent) and coincides with its limiting value when z - <, i,e., with pressure on
a sharp cone. The corresponding picture for density differs sharply from the
preceding. Figure 5 shows relationship p (z, &) as a function of £ with
fixed z values. The values of coordinate z are indicated on each curve. It is
apparent that even at a distance of 100 gradations from the body nose, the den-
sity is close to its limiting value only when £ > 0.1. On the body, however,

a region forms with sharp p gradients (turbulent layer). Density is a non-
monotonic function of £ within this layer.

12
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In addition, Figure 5 clearly shows formation of the Gibbs phenomenon. On
the p graph, there is a characteristic "hump'" whose height does not depend on
z, and this "hump" shifts merely to the left as z gets larger. Let us note
that, depending on the shape of the body in its nose, there may even be several
of these humps, or they may be altogether lacking, as in flow past a blunt cylin-
der.

For purposes of comparison, Figure 6 shows the relationship p (z, £) in
the case of flow past a cylinder with spherical bluntness with the same number
of M = 10,

(o]

Figure 7 shows the relationship p (z,r - 1) (cylinder radius is unity) as
a function of r - 1 with fixed z. Here it is clearly evident that even at
z = 500 the profile of p in the turbulent layer is only very weakly dependent
on z, while at z = 1000 and z = 5000 the p profiles coincide with a great
number of indices and are congruent with the asymptotic relationship p (r - 1).
Figure 6 shows that with values of £ close to unity -- i.e., in the neighbor-
hood of the shock wave -~ a region of flow overexpansion is formed at large
values of z. The formation of the N-wave may be traced in a more detailed

picture.

In three-dimensional flow, the indicated effects appear still more sharply,
especially at large angles of attack.

13



[ Figure 8 gives density distribution
| in flow past a blunt cone with semi-aper-

ture angle B = 10° 4t an angle of attack

o = 15° with M_= 10. The flow pattern

on the upstream side differs greatly from
that on the downstream side. Great den-
sity gradients are formed on the body sur-
| face even at comparatively small z values,
i and therefore a non-uniform mesh must be
used in practice with z = 10,

Figure 9 gives values of circular
velocity component w on the body surface
)
in several cross-sections for B = 107,

M =10, and o = 5, 10, and 15°,

Figure 10 gives the shapes of shock _ /259
| waves for 8 = 10° and o = 15° with M =4

and M = 10.

The problem of three-dimensional
flow past long smooth bodies with the
conic flows computed by the adjustment
method must be regarded in a different
aspect. The adjustment process may be
followed in the calculation of the blunt cone shown in Figures 4 and 5. These
figures also show the remarkable fact that pressure coincides with great ac~
curacy with its own limiting value even at small values of coordinate z, while
density rather greatly differs from its limiting value even at large z values
and tends non-uniformly toward its limiting value.

Figure 8

In calculating flow around the cone, however, we are interested only in
the limiting flow pattern, not with its complex development. Therefore, in
order to exclude difficulties in calculating flow on the body, we must start
with initial data which do not lead to a complex flow picture in the vicinity
of the body surface. In addition, the difference system used to compute flow
in the turbulent layer maintains a constant entropy value on the body with
great accuracy. This results in sharp gradients of the quantity p. In com~
puting conical flows we must use a difference system which possesses the op-
posite property -- it rapidly "forgets" the initial values of entropy on the
body and transmits entropy perturbations from shock wave to body at the great-
est possible speed.

In order to obtain a correct value of conic flow parameters in the whole
closed region within which the variables £, 9 change, we must take into account
the singularities of the conic sections. A, Ferri (Ref. 3) was the first to
show that the solution to the problem would be discontinuous in flow past round
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Figure 10

and elliptical cones. Entropy S necessarily has points of discontinuity in
the closed region 0 < £ <1, 0 < ¢ < 2r. In addition, it may be shown that on
the surface of the cone

= (10)
while in the vicinity of the cone surface, a drastic change in entropy and
velocity components occurs in a very narrow layer. This layer is conventionally
called the turbulent layer. By itself, condition (10) causes no great complica-
tions in the numerical solution, but the narrowness of the turbulent layer
leads to marked complications and requires the development of a suitable
numerical algorithm. Therefore, in the solution process we must take into
consideration the presence of particular entropy points and the nature of flow
in the turbulent layer, in order correctly to obtain the numerical solution.
Lack of space forbids us to describe the numerical algorithm with any degree /260
of accuracy. Let us merely note that in this algorithm it is essential to take
into consideration the behavior of the solution in the vicinity of singular
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Figure 11 Figure 12

points, while their number, nature, singularities, and the location of the
singular point may be determined in the computational process.

The location of the singular points is closely connected with the general
properties of the boundary-value problem to which the conic flow problem re-
duces. In fact, the isoentropicity equation for conic flows has the form

(Bt + 80 + +Bow) T+ 205 =0 an

Therefore, at the points of the entropy discontinuity, it is necessary that
i
u+gv+= = = 0.
Ez Er " an 0 and w/r = 0

As shown in (Ref. 1), however, it is necessary, for the boundary-value
problem to be correct that condition

i
Bt + B0 + - Bow < 0. ‘ (12)
be fulfilled in the region between wave and body.
Impairment of this condition results in incorrectness of the boundary- /261

value problem and instability in the solution to the mixed problem for the
hydrodynamic equation system

90X axX X
o TBaw+Ca +T=0.

It therefore seems more probable that the singular entropy points will
always lie on the surface of the cone where by virtue of the zero flow condition

gzu + grv + —:—ng = 0.

Figures 11-13 show some of the results derived from calculating conic flow.
(Ref. 1) contains systematic tables of flow past circular cones at angles of
attack.
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Figure 11 presents a shock wave trace and the lines of entropy level
obtained in flow past a circular cone with a serm-aperature angle of g = 25°
ascertained at an angle of attack a = 20° with a perfect gas flowing past at /262
M_ = 3. Figure 12 represents a similar pattern for B = 35°, a = 10°, and

M_= 5. This case is characterized by the fact that a reversed position of

the shock wave takes place. On the upstream side, the wave is less pressed to
the body than on the downstream side.

Figure 13 gives the relationship of density within the turbulent layer
for an elliptical cone with semi-axis ratio a/b = 1.333. Angle of attack is
@ =0and M = 5. 1In the lower right corner the curves of p (§,8), 0 <& <1

are shown as functions of £ with fixed angle ¢ . Angle ¢ is measured counter-
clockwise from the major semi-axis. The larger graph depicts the same functions
p (£, 8) with J = const, but the scale on the £ axis is enlarged 1000 times,
but only 5 times on the p axis. On the p axis points are arranged giving the
angle in degrees. Each point gives the demsity value on the cone surface for
the corresponding line J = const.

The results presented in this report were obtained by the authors with
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‘ the assistance of G. P. Voskresenskiy and A. N. Lyubimov.
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